CubeSats have emerged as a promising alternative to satellite missions for studying remote areas where satellite data are scarce and insufficient, such as coastal and marine environments. However, their standard size and weight limitations make integrating remote sensing optical instruments challenging. This work presents the development of Bentayga-I, a CubeSat designed to validate PANDORA, a self-made, lightweight, cost-effective multispectral camera with interchangeable spectral optical filters, in near-space conditions. Its four selected spectral bands are relevant for ocean studies. Alongside the camera, Bentayga-I integrates a power system for short-time operation capacity; a thermal subsystem to maintain battery function; environmental sensors to monitor the CubeSat's internal and external conditions; and a communication subsystem to transmit acquired data to a ground station. The first helium balloon launch with B2Space proved that Bentayga-I electronics worked correctly in near-space environments. During this launch, the spectral capabilities of PANDORA alongside the spectrum were validated using a hyperspectral camera. Its scientific applicability was also tested by capturing images of coastal areas. A second launch is planned to further validate the multispectral camera in a real-world scenario. The integration of Bentayga-I and PANDORA presents promising results for future low-cost CubeSats missions.
Keywords: CubeSat development; earth observation; multispectral imaging; new space; open hardware.