Angle stability improvement using optimised proportional integral derivative with filter controller

Heliyon. 2024 Oct 5;10(19):e38944. doi: 10.1016/j.heliyon.2024.e38944. eCollection 2024 Oct 15.

Abstract

Load inconsistency has disrupted the power system, causing rotor angle fluctuation that leads to angle instability in the system. This research suggests an innovative proportional integral derivative with filter (PIDF)-based thyristor-controlled series compensator (TCSC) controller that utilise an evolutionary programming sine cosine algorithm (EPSCA) for hybrid optimisation to increase the angle stability of the power system. The challenge of the PIDF-TCSC design is transformed into an optimal control problem with respect to performance indices, such as the maximum imaginary part of system eigenvalues, damping ratio and damping factor, where another multi-objective function is utilised to determine the best stabiliser settings. Eigenvalue analysis is used to conduct the stability study in a linearised paradigm of the single-machine infinite-bus (SMIB) network. The resilience of the PIDF controller was tested using a SMIB power network under various operating circumstances. Simulation results are used to evaluate the system's effectiveness with the proposed optimised PIDF-TCSC controller to that of the system using the proportional integral derivative, proportional integral, and base case PIDF-TCSC approaches. The research findings demonstrate the efficacy of EPSCA in implementing PIDF-TCSC motif and its excellent resilient performance for improving power system stability as related to other strategies in various situations.