Determination of the decapping efficiency of THIOMAB™ antibodies with the engineered cysteine in the Fc region for making antibody-drug conjugates by specific hinge fragmentation-liquid chromatography

Anal Bioanal Chem. 2024 Dec 17. doi: 10.1007/s00216-024-05707-w. Online ahead of print.

Abstract

The site-specific antibody-drug conjugates (ADCs), particularly those utilizing the engineered cysteine in Fc fragments of mAbs (THIOMAB™ antibodies), have emerged as a novel class of biotherapeutics for cancer treatment. The engineered cysteine residues in these antibodies are capped by cysteine or glutathione through a disulfide bond. Prior to conjugation with linker-payloads, these caps need to be removed through a reduction process. However, monitoring the efficiency of the decapping process has been challenging due to the lack of effective analytical methods. Intact reversed-phase liquid chromatography-mass spectrometry and hydrophobic interaction chromatography methods failed to separate decapped and capped intact THIOMAB™ mAbs in our study. Instead the fragmentation of mAbs provided a novel strategy to analyze the decapping effiency. After cleavage using a hinge specific enzyme, the generated Fc fragments with and without cysteine and/or glutathione caps displayed different hydrophobicity and were well separated by RPLC, allowing quantitative determination of the decapping efficiency. Enzymes that cleave both above and below the hinge disulfide bonds were tested. The use of FabALATICA can determine percentages of molecules with 0, 1, and 2 cysteine and/or glutathione caps, respectively, regardless of whether the antibody contains the hinge LALA mutations. On the other hand, FabRICATOR enzyme can only be utilized for antibodies without LALA mutations for the overall decapping percentage and cannot be used to estimate intact antibody each with 0, 1, and 2 caps. Therefore, FabALACTICA cleavage followed by RPLC provides a wider application of monitoring the decapping efficiency of all antibodies with the engineered cysteine in Fc.

Keywords: Antibody; Antibody–drug conjugates (ADCs); Decapping efficiency; Engineered cysteine; Fc fragment; Specific hinge fragmentation; Thiomabs; mAbs.