Estimation of absorbed organ doses used in computed tomography (CT) using time-intensive Monte Carlo simulations with virtual patient anatomic models is not widely reported in the literature. Using the library of computational phantoms developed by the University of Florida and the National Cancer Institute, we performed Monte Carlo simulations to calculate organ dose values for 9 CT categories representing the most common body regions and indications for imaging (reflecting low, routine, and high radiation dose examinations), stratified by patient age (in children) and effective diameter (in adults, using "diameter" as a measure of patient size). Our sample of 559,202 adult and 103,423 pediatric CT examinations was prospectively assembled between 2015-2020 from 156 imaging facilities from 27 healthcare organizations in 20 U.S. states and 7 countries in the University of California San Francisco International CT Dose Registry. Organ doses varied by body region and exam type. For example, the mean brain dose associated with head CT was 20 mGy [standard deviation (SD) 14] for head low dose, 46 mGy (SD 21) for head routine dose, and 64 mGy (SD 31) for head high dose scan protocols. The mean colon doses associated with abdomen and pelvis CT were 19 mGy (SD 12), 32 mGy (SD 28), and 69 mGy (SD 42) for low, routine, and high dose examinations, respectively. Organ doses in general varied modestly by patient diameter, and for many categories the organ doses among the largest quartile of patients were no more than 10% higher than doses in the smallest quartile. For example, for abdomen and pelvis high dose, the colon dose increased from 67 to 74 mGy from the smallest to the largest patients (10% increase). With few exceptions, pediatric organ doses also varied relatively little by patient age, except for the youngest children who, on average, had higher organ doses. Thyroid dose, however, tended to increase with age in neck or cervical spine and chest CT. Overall, the highest organ doses were to the skin, thyroid, brain, and eye lens. Mean organ doses differ substantially by site. The organ dose values included in this report are derived from empirical clinical exams and offer useful, representative values. Large inter-site variations demonstrate areas for radiation dose reduction.
© 2025 by Radiation Research Society. All rights of reproduction in any form reserved.