The aberrant metabolic reprogramming endows TNBC cells with sufficient ATP and lactate required for survival and metastasis. Hence, the intervention of the metabolic network represents a promising avenue to alleviate the Warburg effect in TNBC cells to impair their invasive and metastatic potential. Multitudinous in-silico analysis identified Enolase1 (ENO1) and the surface transporter protein, GLUT4 to be the potential targets for the abrogation of the metabolic network. The expression profiles of ENO1 and GLUT4 genes showed anomalous expression in various cancers, including breast cancer. Subsequently, the functional and physiological interactions of the target proteins were analyzed from the protein-protein interaction network. The pathway enrichment analysis identified the prime cancer signaling pathways in which these proteins are involved. Further, docking results bestowed Silibinin as the concurrent inhibitor of ENO1 and GLUT4. Moreover, the stable interaction of Silibinin with both proteins deciphered the binding free energies values of -48.86 and -104.31 KJ/mol from MMPBSA analysis and MD simulation, respectively. Furthermore, the cell viability, ROS assay, and live-dead imaging underscored the pronounced cytotoxicity of Silibinin, illuminating its capacity to incur apoptosis within TNBC cells. Additionally, glycolysis assay and gene expression analysis demonstrated the silibinin-mediated inhibition of the glycolysis pathway. Eventually, a lipidomic reprogramming towards fatty acid metabolism was established from the elevated lipid droplet accumulation, exogenous fatty acid uptake and de-novo lipogenesis. Nevertheless, repression of EMT and Wnt pathway progression by Silibinin was perceived from the gene expression studies. Overall, the current study highlights the tweaking of intricate signaling crosstalk between glycolysis and the Wnt pathway in TNBC cells through inhibiting ENO1 and GLUT4.
Keywords: Breast cancer; EMT; MD simulation; Metabolic reprogramming; Silibinin.
Copyright © 2024 Elsevier Ltd. All rights reserved.