Construction of 1D Molecular Conductive Wires Through a Polarized Gene Weaving Strategy for Efficient Electromagnetic Wave Absorption

Small. 2024 Dec 17:e2409786. doi: 10.1002/smll.202409786. Online ahead of print.

Abstract

The growing threat of electromagnetic pollution has become a pressing safety concern. Metal-organic framework (MOF) derivatives are considered ideal candidates for mitigating electromagnetic radiation. However, due to the limitations imposed by complex post-processing and disruption of pristine crystal structures, the mechanisms of electromagnetic wave absorption remain unclear, let alone achieving atomic-level regulation in MOF derivatives. Moreover, research on MOF-based electromagnetic wave absorbers (EMWA) has predominantly focused on 2D and 3D structures, leaving 1D MOFs largely unexplored. To address these challenges, a bottom-up polarization gene weaving strategy is proposed to integrate polarizable conjugated groups, thieno(3,2-b)thiophene (TBTT), into two types of conductive MOFs by fine-tuning self-assembly conditions. As expected, both MOFs exhibited strong natural polarization effects. Among them, the 1D linear coordination mode of CuTBTT-1D demonstrated enhanced charge carrier mobility and geometric effects compared to the 2D structure, CuTBTT-2D. The synthesized 1D molecular polarization wire, with a thickness of 2.2 mm, achieved ultra-high reflection loss (-77 dB) and super-wide absorption bandwidth (6.52 GHz). Its performance surpasses that of all known MOF-based EMWAs. This study provides a valuable strategy for the rational design of next-generation 1D MOF EMWA with atomic precision.

Keywords: conductive metal‐organic framework; electromagnetic wave absorption; molecular Polarization; polarization loss.