Background: The mutualistic beneficial relationship between legume plants and rhizobia enables the growth of plants in nitrogen-limiting conditions. Rhizobia infect legumes through root hairs and trigger nodule organogenesis in the cortex. The plant hormone cytokinin plays a pivotal role in regulating both rhizobial infection and the initiation of nodule development. However, the mechanism used by the cytokinin output module to control symbiosis remains poorly documented.
Results: In this study, we identified a cytokinin signaling output component encoded by the Type-B RESPONSE REGULATOR (RRB) gene, LjRRB12, which is expressed in Lotus japonicus nodule primordia and young nodules. Disruption of LjRRB12 leads to a reduction in nodulation and to an increase in the number of infection threads. Overexpression of LjRRB12D76E, an active form of the LjRRB12 protein, induces nodule-like structures in wild type and hit1 (hyperinfected 1/lotus histidine kinase 1) mutants but not in nin2 (nodule inception 2) mutants. Additionally, we utilized nCUT&Tag and EMSA to demonstrate that LjRRB12 can bind a CE (cytokinin response element) from the LjNIN promoter.
Conclusions: Our results provide a deeper understanding of nodule organogenesis by establishing a link between the cytokinin signal and the transcriptional regulation of LjNIN.
Keywords: Cytokinin; Infection thread; Nodule inception; Nodule organogenesis; Symbiotic nitrogen fixation; Type-B response regulator.
© 2024. The Author(s).