Extracellular electron transfer genes expressed by candidate flocking bacteria in cable bacteria sediment

mSystems. 2024 Dec 19:e0125924. doi: 10.1128/msystems.01259-24. Online ahead of print.

Abstract

Cable bacteria, filamentous sulfide oxidizers that live in sulfidic sediments, are at times associated with large flocks of swimming bacteria. It has been proposed that these flocks of bacteria transport electrons extracellularly to cable bacteria via an electron shuttle intermediate, but the identity and activity of these bacteria in freshwater sediment remain mostly uninvestigated. Here, we elucidate the electron exchange capabilities of the bacterial community by coupling metagenomics and metatranscriptomics to 16S rRNA amplicon-based correlations with cable bacteria over 155 days. We identified candidate flocking bacteria as bacteria containing genes for motility and extracellular electron transfer including synthesis genes for potential extracellular electron shuttles: phenazines and flavins. Based on these criteria, 22 MAGs were from candidate flockers, which constituted 21.4% of all 103 MAGs. Of the candidate flocking bacteria, 42.1% expressed extracellular electron transfer genes. The proposed flockers belonged to a large variety of metabolically versatile taxonomic groups: 18 genera spread across nine phyla. Our data suggest that cable bacteria in freshwater sediments engage in electric relationships with diverse exoelectrogenic microbes. This community, found in deeper anoxic sediment layers, is involved in sulfur, carbon, and metal (in particular Fe) cycling and indirectly utilizes oxygen here by extracellularly transferring electrons to cable bacteria.

Importance: Cable bacteria are ubiquitous, filamentous bacteria that couple sulfide oxidation to the reduction of oxygen at up to centimeter distances in sediment. Cable bacterial impact extends beyond sulfide oxidation via interactions with other bacteria that flock around cable bacteria and use them as electron acceptor "shortcut" to oxygen. The exact nature of this interspecies electric interaction remained unknown. With metagenomics and metatranscriptomics, we determined what extracellular electron transport processes co-occur with cable bacteria, demonstrating the identity and metabolic capabilities of these potential flockers. In sediments, microbial activities are sharply divided into anaerobic and aerobic processes, with oxygen reaching only millimeters deep. Cable bacteria extend the influence of oxygen to several centimeters, revealing a new class of anaerobic microbial metabolism with cable bacteria as electron acceptors. This fundamentally changes our understanding of sediment microbial ecology with wide-reaching consequences for sulfur, metal (in particular Fe), and carbon cycling in freshwater and marine sediments.

Keywords: cable bacteria; extracellular electron transfer; flocking bacteria; interspecies electron transfer; sediment.