Objectives: Recently, epicardial adipose tissue (EAT) assessed by CT was identified as an independent mortality predictor in patients with various cardiac diseases. Our goal was to develop a deep learning pipeline for robust automatic EAT assessment in CT.
Methods: Contrast-enhanced ECG-gated cardiac and thoraco-abdominal spiral CT imaging from 1502 patients undergoing transcatheter aortic valve replacement (TAVR) was included. Slice selection at aortic valve (AV)-level and EAT segmentation were performed manually as ground truth. For slice extraction, two approaches were compared: A regression model with a 2D convolutional neural network (CNN) and a 3D CNN utilizing reinforcement learning (RL). Performance evaluation was based on mean absolute z-deviation to the manually selected AV-level (Δz). For tissue segmentation, a 2D U-Net was trained on single-slice images at AV-level and compared to the open-source body and organ analysis (BOA) framework using Dice score. Superior methods were selected for end-to-end evaluation, where mean absolute difference (MAD) of EAT area and tissue density were compared. 95% confidence intervals (CI) were assessed for all metrics.
Results: Slice extraction using RL was slightly more precise (Δz: RL 1.8 mm (95% CI: [1.6, 2.0]), 2D CNN 2.0 mm (95% CI: [1.8, 2.3])). For EAT segmentation at AV-level, the 2D U-Net outperformed BOA significantly (Dice score: 2D U-Net 91.3% (95% CI: [90.7, 91.8]), BOA 85.6% (95% CI: [84.7, 86.5])). The end-to-end evaluation revealed high agreement between automatic and manual measurements of EAT (MAD area: 1.1 cm2 (95% CI: [1.0, 1.3]), MAD density: 2.2 Hounsfield units (95% CI: [2.0, 2.5])).
Conclusions: We propose a method for robust automatic EAT assessment in spiral CT scans enabling opportunistic evaluation in clinical routine.
Critical relevance statement: Since inflammatory changes in epicardial adipose tissue (EAT) are associated with an increased risk of cardiac diseases, automated evaluation can serve as a basis for developing automated cardiac risk assessment tools, which are essential for efficient, large-scale assessment in opportunistic settings.
Key points: Deep learning methods for automatic assessment of epicardial adipose tissue (EAT) have great potential. A 2-step approach with slice extraction and tissue segmentation enables robust automated evaluation of EAT. End-to-end automation enables large-scale research on the value of EAT for outcome analysis.
Keywords: Deep learning; Epicardial adipose tissue; Tomography (X-ray computed); Transcatheter aortic valve replacement.
© 2024. The Author(s).