Traditionally, control of coffee plant bacterial halo blight (BHB) caused by the phytopathogen Pseudomonas coronafaciens pv. garcae (Pcg) involves frequent spraying of coffee plantations with non-environmentally friendly and potentially bacterial resistance-promoting copper products or with kasugamycin hydrochloride. In this study we report a leap forward in the quest for a new ecofriendly approach, characterizing (both physicochemically and biologically) and testing both in vitro and ex vivo a new lytic phage for Pcg. An in-depth molecular (genomic and DNA structural features) characterization of the phage was also undertaken. Phage PcgS01F belongs to the class Caudoviricetes, Drexlerviridae family and genus Guelphvirus, and presents a siphovirus-like morphotype. Phage PcgS01F showed a latency period of 40 min and a burst size of 46 PFU/host cell, allowing to conclude that it replicates well in Pcg IBSBF-158. At Multiplicity Of Infection (MOI, or the ratio of phage to bacteria) 1000, the performance of phage PcgS01F was much better than at MOI 10, promoting increasing bacterial reductions until the end of the in vitro inactivation assays, stabilizing at a significant 82 % bacterial load reduction. Phage PcgS01F infected and killed Pcg cells ex vivo in coffee plant leaves artificially contaminated, with a maximum of Pcg inactivation of 7.66 log CFU/mL at MOI 1000 after 36 h of incubation. This study provides evidence that the isolated phage is a promising candidate against the causative agent of BHB in coffee plants.
Keywords: Bacteria-phage in vitro and ex vivo inactivation; Bacterial halo blight; Bacteriophage; Biological and molecular characterization; Drexlerviridae family and genus Guelphvirus; Pseudomonas coronafaciens pv. garcae; Siphovirus.
Copyright © 2024 Elsevier Inc. All rights reserved.