Discovery of pentacyclic triterpene conjugates as HBV polymerase/NTCP dual-targeting inhibitors with potent anti-HBV activities

Bioorg Chem. 2024 Dec 11:154:108054. doi: 10.1016/j.bioorg.2024.108054. Online ahead of print.

Abstract

The inhibition of HBV DNA and elimination of HBsAg has already been established as an indicator for HBV clinic cure, and a novel dual-targeting inhibitors of HBV polymerase/entry are designed and synthesized in this study. Pentacyclic triterpenes (PTs) scaffold of exhibiting a high affinity to NTCP, including glycyrrhitinic acid (GA), oleanolic acid (OA), ursolic acid (UA), and betulinic acid (BA) were linked neatly with the nucleoside drug zidovudine (AZT) through a molecular hybrid strategy to synthesize twenty of PTs-AZT conjugates for targeting HBV polymerase as well as sodium taurocholate cotransporting polypeptide (NTCP). The conjugates showed significant inhibitory effects on the secretion of HBsAg and HBeAg in HepG2.2.15 cells, and the activity on HBsAg were better. Moreover, HBV DNA replication was also notably suppressed after incubated with the conjugates. The IC50 value of BA-AZT1 on HBsAg inhibition was 0.65 ± 0.07 μM, and it was 284.2 times and 442.2 times higher comparing to corresponding parent compound BA and AZT. Additionally, the therapeutic index (TI) was also improved by 87.8 times than AZT. And the IC50 value of BA-AZT1 on inhibition of HBV DNA replication was 0.70 ± 0.02 μM, 10.4 times higher than that of AZT besides conspicuous TI. Molecular docking suggested that AZT skeleton of conjugate BA-AZT1 interacted with B region of HBV Polymerase reverse transcription region, and BA structure simultaneously targeted to C region of polymerase via hydrophobic chain, establishing strong binding interactions with the HBV Pol protein. In addition, docked with NTCP, BA-AZT1 with flat pentacyclic structure inserted into the interface and also formed hydrogen bonds, hydrophobic and van der Waals forces with the amino residue 157-165 of NTCP. Further SPR analysis demonstrated the binding affinity of BA-AZT1 to C region of polymerase was 19.55 μM, stronger than 53.21 μM of BA and 31.82 μM of AZT. BA-AZT1 selectively bound to the 157-165 epitopes of NTCP receptors in host cell but not PreS1 of virus. As a result, we deduced that the designed conjugates targeted NTCP and HBV polymerase, not only prevented HBV from entering host cells via selective binding NTCP, but also inhibited HBV DNA replication through obstructing the function of HBV polymerase, and it could potentially serve as a promising dual-functional and dual-target inhibitor with both replication and entry inhibition to exert anti-HBV activity.

Keywords: Dual-target inhibitor; HBV polymerase; Hepatitis B virus; NTCP; Pentacyclic triterpene conjugates.