Deptor knockout mice were constructed by crossing Deptor Floxp3 mice with myh6 Cre mice, establishing a myocardial ischemia-reperfusion (I/R) model. Deptor knockout mice exhibited significantly increased myocardial infarction size and increased myocardial apoptosis in vivo. ELISA analysis indicated that the expression of CK-MB, LDH, and CtnT/I was significantly higher in the Deptor knockout mice. Deptor siRNA significantly reduced cell activity and increased myocardial apoptosis after I/R-induced in vitro. Deptor siRNA also significantly up-regulated the expression of p-mTOR, p-4EBP1, and p62, and down-regulated the expression of LC3 after I/R induction. Immunofluorescence indicated that LC3 dual fluorescence was weakened by Deptor knockout, and was enhanced after transfection with Deptor-overexpression plasmids. Treatment with OSI027, a co-inhibitor of mTORC1 and mTORC2, in either Deptor knockout mice or Deptor knockout H9C2 cells, resulted in a significant reduction in infarction size and apoptotic cardiomyocytes. ELISA analysis also showed that the expression of CK-MB, LDH, and CtnT/I were significantly down-regulated by treatment with OSI027. CCK-8 cell viability indicated that cell viability was enhanced, and the number of apoptotic cells was decreased in vitro following treatment with OSI027. These results revealed that OSI027 exerts a protective effect on myocardial ischemia/reperfusion injury in both an in vivo and in an in vitro model of I/R. These findings demonstrate that Deptor protects against I/R-induced myocardial injury by inhibiting the mTOR pathway and by increasing autophagy.
© 2024. The Author(s).