Mining single-cell data for cell type-disease associations

NAR Genom Bioinform. 2024 Dec 18;6(4):lqae180. doi: 10.1093/nargab/lqae180. eCollection 2024 Dec.

Abstract

A robust understanding of the cellular mechanisms underlying diseases sets the foundation for the effective design of drugs and other interventions. The wealth of existing single-cell atlases offers the opportunity to uncover high-resolution information on expression patterns across various cell types and time points. To better understand the associations between cell types and diseases, we leveraged previously developed tools to construct a standardized analysis pipeline and systematically explored associations across four single-cell datasets, spanning a range of tissue types, cell types and developmental time periods. We utilized a set of existing tools to identify co-expression modules and temporal patterns per cell type and then investigated these modules for known disease and phenotype enrichments. Our pipeline reveals known and novel putative cell type-disease associations across all investigated datasets. In addition, we found that automatically discovered gene co-expression modules and temporal clusters are enriched for drug targets, suggesting that our analysis could be used to identify novel therapeutic targets.