The discharge characteristics of motor units innervating functionally paralyzed muscles

J Neurophysiol. 2024 Dec 20. doi: 10.1152/jn.00389.2024. Online ahead of print.

Abstract

For individuals with motor complete spinal cord injury (SCI), previous works have shown that spared motor neurons below the injury level can still be voluntarily controlled. In this study, we investigated the behavior of these neurons after SCI by analyzing neural and spatial properties of individual motor units using high-density surface electromyography (HDsEMG) and ultrasound imaging. The dataset for this study is based on motor unit data from our previous work (Oliveira et al., 2024). Eight participants with chronic motor complete SCI and twelve uninjured controls attempted multiple hand movements, guided by a virtual hand, while we recorded forearm muscle activity. We analyzed the common synaptic input to motor neurons with a factorization method and found two dominant motor unit modes in both the SCI and control groups. Each mode was strongly correlated with the virtual hand's flexion or extension movements. The delay between flexion and extension movements and the motor unit modes was similar between groups, suggesting preserved common input to motor neurons after SCI. We classified motor units into task-modulated or non-modulated (i.e., tonic or irregularly firing) based on their discharge patterns and phase difference with virtual hand kinematics and found a higher proportion of non-modulated motor units in the SCI group. At the motor unit action potential level, we found larger motor unit territories after SCI. Finally, we observed distinct movements of paralyzed muscles with concurrent HDsEMG and ultrasound imaging, indicating the presence of highly functional motor units with distinct spared territories after SCI.

Keywords: high-density surface electromyography; motor neuron; motor unit; spinal cord injury.