The light-harvesting complex II (LHCII) in green plants exhibits highly efficient excitation energy transfer (EET). A comprehensive understanding of the EET mechanism in LHCII requires quantum chemical, molecular dynamics (MD), and statistical mechanics calculations that can adequately describe pigment molecules in heterogeneous environments. Herein, we develop MD simulation parameters that accurately reproduce the quantum mechanical/molecular mechanical energies of both the ground and excited states of all chlorophyll (Chl) molecules in membrane embedded LHCII. The present simulations reveal that Chl a molecules reside in more inhomogeneous environments than Chl b molecules. We also find a narrow gap between the exciton energy levels of Chl a and Chl b. In addition, we investigate the nature of the exciton states of Chl molecules, such as delocalization, and analyze the optical spectra of LHCII, which align with experimental results. Thus, the MD simulation parameters developed in this study successfully reproduce the excitonic and optical properties of the Chl molecules in LHCII, validating their effectiveness.