In response to the urgent need for effective treatments during the rapid spread and high mortality rate of COVID-19, existing drugs were repurposed for potential antiviral effects, including favipiravir, originally designed as an RNA-dependent RNA polymerase inhibitor for influenza. Despite limited antiviral effectiveness against COVID-19, favipiravir has been reported to cause several adverse drug events (ADEs) in the body. Recent studies have shown that favipiravir can damage various tissues in rats. However, a detailed analysis of its effects on the metabolomics profile of tissues using high-resolution spectroscopic technologies has not yet been conducted. In this study, it was aimed to analyze the metabolomic changes in rat kidney tissues induced by favipiravir, using high-resolution nuclear magnetic resonance (NMR) spectroscopy. Sixty male Wistar Albino rats were randomly divided into three groups: control, low-dose favipiravir (200 mg/kg), and high-dose favipiravir (300 mg/kg), with 20 rats per group. Each group received its respective treatment via oral gavage. After the treatment period, kidney tissue samples were collected and subjected to 1H NMR analysis. Bioinformatics analysis of the obtained 1H NMR spectra suggests that favipiravir induces dose-dependent metabolic changes in kidney tissue, with higher doses causing more profound disruptions in several pathways.
Keywords: COVID-19; Favipiravir; Kidney; Metabolomics; NMR.
Copyright © 2024 Elsevier B.V. All rights reserved.