Atopic dermatitis, food allergy, allergic rhinitis, and asthma are among the most common diseases in childhood. They are heterogeneous diseases, can co-exist in their development, and manifest complex associations with other disorders and environmental and hereditary factors. Elucidating these intricacies by identifying clinically distinguishable groups and actionable risk factors will allow for better understanding of the diseases, which will enhance clinical management and benefit society and affected individuals and families. Artificial intelligence (AI) is a promising tool in this context, enabling discovery of meaningful patterns in complex data. Numerous studies within pediatric allergy have and continue to use AI, primarily to characterize disease endotypes/phenotypes and to develop models to predict future disease outcomes. However, most implementations have used relatively simplistic data from one source, such as questionnaires. In addition, methodological approaches and reporting are lacking. This review provides a practical hands-on guide for conducting AI-based studies in pediatric allergy, including (1) an introduction to essential AI concepts and techniques, (2) a blueprint for structuring analysis pipelines (from selection of variables to interpretation of results), and (3) an overview of common pitfalls and remedies. Furthermore, the state-of-the art in the implementation of AI in pediatric allergy research, as well as implications and future perspectives are discussed.
Conclusion: AI-based solutions will undoubtedly transform pediatric allergy research, as showcased by promising findings and innovative technical solutions, but to fully harness the potential, methodologically robust implementation of more advanced techniques on richer data will be needed.
What is known: • Pediatric allergies are heterogeneous and common, inflicting substantial morbidity and societal costs. • The field of artificial intelligence is undergoing rapid development, with increasing implementation in various fields of medicine and research.
What is new: • Promising applications of AI in pediatric allergy have been reported, but implementation largely lags behind other fields, particularly in regard to use of advanced algorithms and non-tabular data. Furthermore, lacking reporting on computational approaches hampers evidence synthesis and critical appraisal. • Multi-center collaborations with multi-omics and rich unstructured data as well as utilization of deep learning algorithms are lacking and will likely provide the most impactful discoveries.
Keywords: Allergic rhinitis; Allergy; Artificial intelligence; Asthma; Atopic dermatitis; Childhood; Children; Eczema; Infants; Machine learning; Pediatrics; Teenagers; Wheezing.
© 2024. The Author(s).