Background: the protein phosphatase 3 catalytic subunit alpha (PPP3CA) gene encodes for the alpha isoform of the calcineurin catalytic subunit, which controls the phosphorylation status of many targets. Currently, 23 pathogenic variants of PPP3CA are known, with clinical manifestations varying by mutation type and domain.
Results: through whole exome sequencing, we found two de novo variants in PPP3CA: a frameshift variant predicted leading to a truncated protein in Pt.1 and a splicing variant in Pt.2 associated with mild phenotype. PPP3CA is ubiquitously expressed with tissue-specificity of; namely, splicing isoform 1 prevailing over isoform 2 in the central nervous system. By analyzing isoform distribution in patient-derived cell lines, we highlight a skewed expression of both isoforms in Pt.1, whereas only isoform 2 shows a moderate reduction in Pt.2. In contrast, we did not observe significant abundance changes at the protein level. Cell lines derived from Pt.1 showed a reduced proliferation, associated with an increase in cell death and the upregulation of the unfolded protein response (UPR) pathway.
Conclusion: data suggest that an aberrant PPP3CA protein in Pt.1 could lead to UPR activation resulting in increased cell death. In Pt.2 an imbalance between the two main isoforms possibly explains the peculiar pathological manifestations, such as a moderate developmental delay.
Keywords: DEE-91; LCLs; PPP3CA; UPS; calcineurin.
© 2024. The Author(s).