We herein investigated the effects of salt (NaCl) stress on soybean nodulation by rhizobial strains. We specifically exami-ned: (1) the effects of NaCl on nodule maturity and positioning by inoculating three rhizobial strains (Bradyrhizobium diazoefficiens USDA110T, Bradyrhizobium elkanii USDA31, and Sinorhizobium fredii USDA191) onto soybean variety CNS, (2) the effects of the NaCl treatment on isoflavones (daidzein and genistein) secretion by CNS, (3) the effects of the NaCl treatment on gene expression induced by daidzein and genistein in rhizobia, and (4) the effects of the NaCl treatment on rhizobial growth. The results obtained were as follows: (1) the NaCl treatment delayed nodule development and reduced nodulation on the primary root following the USDA110T inoculation, minimal sensitivity regarding nodule formation in the USDA 31 inoculation, and significantly increased the mature nodule number and nodules on the primary root following the USDA 191 inoculation. (2) The NaCl treatment significantly reduced the secretion of daidzein from soybean roots, but did not significantly affect that of genistein. (3) NaCl treatment induced a significant decrease in genistein-induced nodC expression in USDA110T, but not in USDA31, and also caused a significant reduction in daidzein-induced nodC expression, but not genistein-induced expression, in USDA191. (4) NaCl treatment reduced survivability under acidic conditions, but increased survivability under saline-alkaline conditions for USDA191 than bradyrhizobia. These results indicate that saline conditions give S. fredii a competitive advantage over Bradyrhizobium during soybean infection.
Keywords: isoflavones; nodC gene expression; nodulation; saline soil; soybean.