Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens. Here, we address questions of how LECs achieve durable antigen archiving and whether LECs with high levels of antigen express unique transcriptional programs. We used single cell sequencing in dissociated LN tissue and spatial transcriptomics to quantify antigen levels in LEC subsets and dendritic cell populations at multiple time points after immunization and determined that ceiling and floor LECs archive antigen for the longest duration. We identify, using spatial transcriptomics, antigen positive LEC-dendritic cell interactions. Using a prime-boost strategy we find increased antigen levels within LECs after a second immunization demonstrating that LEC antigen acquisition and archiving capacity can be improved over multiple exposures. Using machine learning we defined a unique transcriptional program within archiving LECs that predicted LEC archiving capacity in mouse and human independent data sets. We validated this modeling, showing we could predict lower levels of LEC antigen archiving in chikungunya virus-infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish unique properties of LECs and a defining transcriptional program for antigen archiving that can predict antigen archiving capacity in different disease states and organisms.
Keywords: antigen archiving; chikungunya virus; dendritic cell; gene expression program; immunization; lymph node; lymphatic endothelial cell.