This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1-4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5-7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8-10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.
Keywords: Chimera; Multi-layer network; Synaptic plasticity.
© The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.