Sleep apnea/hypopnea is a sleep disorder characterized by repeated pauses in breathing which could induce a series of health problems such as cardiovascular disease (CVD) and even sudden death. Polysomnography (PSG) is the most common way to diagnose sleep apnea/hypopnea. Considering that PSG data acquisition is complex and the diagnosis of sleep apnea/hypopnea requires manual scoring, it is very time-consuming and highly professional. With the development of wearable devices and AI techniques, more and more works have been focused on building machine and deep learning models that use single or multi-modal physiological signals to achieve automated detection of sleep apnea/hypopnea. This paper provides a comprehensive review of automatic sleep apnea/hypopnea detection methods based on AI-based techniques in recent years. We summarize the general process used by existing works with a flow chart, which mainly includes data acquisition, raw signal pre-processing, model construction, event classification, and evaluation, since few papers consider these. Additionally, the commonly used public database and pre-processing methods are also reviewed in this paper. After that, we separately summarize the existing methods related to different modal physiological signals including nasal airflow, pulse oxygen saturation (SpO2), electrocardiogram (ECG), electroencephalogram (EEG) and snoring sound. Furthermore, specific signal pre-processing methods based on the characteristics of different physiological signals are also covered. Finally, challenges need to be addressed, such as limited data availability, imbalanced data problem, multi-center study necessity etc., and future research directions related to AI are discussed.
Keywords: AI-based techniques; Automatic detection; Human physiological signals; Sleep apnea/hypopnea.
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.