Synthesis and Characterization of Optically Transparent and Electrically Conductive Mo-Doped ZnO, F-Doped ZnO, and Mo/F-Codoped ZnO Thin Films via Aerosol-Assisted Chemical Vapor Deposition

Cryst Growth Des. 2024 Dec 4;24(24):10256-10266. doi: 10.1021/acs.cgd.4c01238. eCollection 2024 Dec 18.

Abstract

Mo-doped ZnO (MZO), F-doped ZnO (FZO), and Mo/F-codoped ZnO (MFZO) films have been deposited using a simple, cheap, and effective thin-film preparation route, aerosol-assisted chemical vapor deposition (AACVD). ZnO was successfully doped with Mo and/or F, confirmed by X-ray photoelectron spectroscopy (XPS) and by a decrease in unit cell parameters from X-ray diffraction (XRD). XRD also confirmed that all of the films had hexagonal wurtzite ZnO structures. Scanning electron microscopy showed that all of the films had well-defined surface features. The undoped ZnO film had a high resistivity of ∼102 Ω·cm, determined by Hall effect measurements, and a visible light transmittance of 72%, determined by ultraviolet-visible (UV-vis)-IR spectroscopy. The transmittance of the doped and codoped films was improved to 75-85%. The ZnO film codoped with 6.2 atom% Mo and 3.6 atom% F, deposited at 550 °C achieved the minimum resistance (5.084 × 10-3 Ω·cm) with a significant improvement in carrier concentration (5.483 × 1019 cm-3) and mobility (21.78 cm2 V-1 s-1).