Single cell genomics has revolutionized our understanding of neuronal cell types. However, scalable technologies for probing single-cell connectivity are lacking, and we are just beginning to understand how molecularly defined cell types are organized into functional circuits. Here, we describe a protocol to generate high-complexity barcoded rabies virus (RV) for scalable circuit mapping from tens of thousands of individual starter cells in parallel. In addition, we introduce a strategy for targeting RV-encoded barcode transcripts to the nucleus so that they can be read out using single-nucleus RNA sequencing (snRNA-seq). We apply this tool in organotypic slice cultures of the developing human cerebral cortex, which reveals the emergence of cell type- specific circuit motifs in midgestation. By leveraging the power and throughput of single cell genomics for mapping synaptic connectivity, we chart a path forward for scalable circuit mapping of molecularly-defined cell types in healthy and disease states.