GM-CSF engages multiple signaling pathways to enhance pro-inflammatory cytokine responses in human monocytes during Legionella infection

bioRxiv [Preprint]. 2024 Dec 10:2024.12.05.627084. doi: 10.1101/2024.12.05.627084.

Abstract

The proinflammatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is required for host defense against a wide range of pathogens. We previously found that GM-CSF enhances inflammatory cytokine production in murine monocytes and is required for in vivo control of the intracellular bacterial pathogen Legionella pneumophila . It is unclear whether GM-CSF similarly augments cytokine production in human monocytes during bacterial infection. Here, we find that GM-CSF enhances inflammatory cytokine expression in Legionella- infected human monocytes by engaging multiple signaling pathways. Legionella - and TLR-dependent NF-𝜅B signaling is a prerequisite signal for GM-CSF to promote cytokine expression. Then, GM-CSF-driven JAK2/STAT5 signaling is required to augment cytokine expression in Legionella -infected human monocytes. We also found a role for PI-3K/Akt/mTORC1 signaling in GM-CSF-dependent upregulation of cytokine expression. Finally, glycolysis and amino acid metabolism are also critical for GM-CSF to boost cytokine gene expression in human monocytes during infection. Our findings show that GM-CSF-mediated enhancement of cytokine expression in infected human monocytes is regulated by multiple signaling pathways, thereby allowing the host to fine tune antibacterial immunity.

Publication types

  • Preprint