The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO6) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1:10). The results demonstrated that the number of hydrogen bonds in designed ternary DESs was 16.5% higher compared to those in the binary DESs, resulting in efficient reaction kinetics to break the metals-oxygen bond. More importantly, the competing-ligand (p-toluenesulfonic acid) could preferentially enter into the first nanostructure sheath and reduce the proportion of solvated oxalic acid (OxA) from 28.36% to 17.76% within the nanostructure, which enable OxA molecules to enhance the coordination interaction with metal for precipitating NiC2O4·2H2O product (~ 95.7% purity) from spent cathodes. This work achieved impressive profitability ($16.05 per kg feedstock) and effectively reduction of GHG emissions during the recycling process, making it applicable to critical sustainability initiatives.
Keywords: Spent cathode, Battery Recycling, Deep Eutectic Solvent, Selective Recycling, Nanostructure Regulation.
© 2024 Wiley‐VCH GmbH.