Protein-ligand interactions are the molecular basis of many important cellular activities, such as gene regulation, cell metabolism, and signal transduction. Protein-ligand binding affinity is a crucial metric of the strength of the interaction between the two, and accurate prediction of its binding affinity is essential for discovering drugs' new uses. So far, although many predictive models based on machine learning and deep learning have been reported, most of the models mainly focus on one-dimensional sequence and two-dimensional structural characteristics of proteins and ligands, but fail to deeply explore the detailed interaction information between proteins and ligand atoms in the binding pocket region of three-dimensional space. In this study, we introduced a novel 4D tensor feature to capture key interactions within the binding pocket and developed a three-dimensional convolutional neural network (CNN) model based on this feature. Using ten-fold cross-validation, we identified the optimal parameter combination and pocket size. Additionally, we employed feature engineering to extract features across multiple dimensions, including one-dimensional sequences, two-dimensional structures of the ligand and protein, and three-dimensional interaction features between them. We proposed an efficient protein-ligand binding affinity prediction model MCDTA (multi-dimensional convolutional drug-target affinity), built on a multi-dimensional convolutional neural network framework. Feature ablation experiments revealed that the 4D tensor feature had the most significant impact on model performance. MCDTA performed exceptionally well on the PDBbind v.2020 dataset, achieving an RMSE of 1.231 and a PCC of 0.823. In comparative experiments, it outperformed five other mainstream binding affinity prediction models, with an RMSE of 1.349 and a PCC of 0.795. Moreover, MCDTA demonstrated strong generalization ability and practical screening performance across multiple benchmark datasets, highlighting its reliability and accuracy in predicting protein-ligand binding affinity. The code for MCDTA is available at https://github.com/dfhuang-AI/MCDTA .
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.