Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Saccharomyces cerevisiae Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles. We found that individual Med15 activities were influenced by the number of activator binding domains (ABDs) and adjacent polyglutamine tract composition. Robust Med15 activity required at least the Q1 tract and the length of that tract modulated activity in a context-dependent manner. Reduced Msn2-dependent transcriptional activation due to Med15 Q1 tract variation correlated with reduced Msn2:Med15 interaction strength, but interaction strength did not always mirror phase separation propensity. We also observed that distant glutamine tracts and Med15 phosphorylation affected the activities of the KIX domain, and interaction studies revealed that intramolecular interactions may affect some Med15-transcription factor interactions.
Keywords: Med15; Mediator complex; Msn2; liquid-liquid phase separation; polyglutamine.