bta-miR-484 Inhibits Bovine Intramuscular Adipogenesis by Regulating Mitotic Clonal Expansion via the MAP3K9/JNK/CCND1 Axis

J Agric Food Chem. 2024 Dec 24. doi: 10.1021/acs.jafc.4c07956. Online ahead of print.

Abstract

Intramuscular fat (IMF) content is a critical indicator of the beef nutritional value and flavor. In this study, we focused on bta-miR-484, a microRNA that is differentially expressed during the adipogenic differentiation of bovine intramuscular adipocytes and is negatively correlated with the IMF content across different cattle breeds. Our findings demonstrate that bta-miR-484 inhibits adipogenic differentiation without altering the fatty acid composition of bovine intramuscular adipocytes. miRNA pull-down and dual-luciferase reporter assays confirmed that MAP3K9 is a target gene of bta-miR-484. Furthermore, bta-miR-484 suppresses the JNK signaling pathway by targeting MAP3K9, leading to decreased CCND1 expression, which impedes the mitotic clonal expansion (MCE) process and inhibits intramuscular adipocyte differentiation. In summary, this study uncovers a novel mechanism by which bta-miR-484 regulates bovine IMF content and provides the first exploration of MCE during intramuscular adipocyte adipogenic differentiation. These findings offer valuable theoretical insights into beef cattle breeding and molecular improvements.

Keywords: Bta-miR-484; Intramuscular adipocytes; JNK; MAP3K9; MCE.