The Melamine-Driven Solvation Effect Promotes Oxygen Reduction on a Platinum Catalyst: Machine Learning-Aided Free Energy Calculations

J Phys Chem Lett. 2024 Dec 24:265-273. doi: 10.1021/acs.jpclett.4c03437. Online ahead of print.

Abstract

The modification of Pt surfaces with organic compounds like melamine enhances oxygen reduction reaction activity and catalyst durability. Through first-principles free energy calculations utilizing thermodynamic integration and finite-temperature molecular dynamics, enhanced by machine learning force fields for efficient sampling of nanosecond-scale interfacial water fluctuations and incorporating corrections to accurately reproduce first-principles free energies, we demonstrate that melamine destabilizes OH adsorbates, facilitating their removal and enhancing catalytic activity. Unlike alloys, where OH destabilization is driven by changes in electronic structure and surface strain, melamine disrupts hydrogen bonding between OH and interfacial water. Structural and vibrational analyses reveal that melamine alters the water solvation structure, which is evident in modified radial distribution functions and a blue shift in the O-H stretching vibrations. These findings indicate that manipulating interfacial solvation with organic compounds could be a promising approach to enhance catalytic activity without compromising durability.