Approximately one-tenth of the global population is affected by diabetes mellitus, and its incidence continues to rise each year. In China, 1.4 million patients die from diabetes-related complications every year. Additionally, approximately 26% of patients with diabetes develop diabetic cardiomyopathy, with heart failure being one of the main causes of death in these patients. However, early detection of diabetic cardiomyopathy has proven to be difficult in a clinical setting; furthermore, there are limited guidelines and targeted means of prevention and treatment for this disease. In recent years, several studies have provided evidence for the occurrence of various forms of regulated cell death in diabetic myocardial cells, including apoptosis, necroptosis, ferroptosis, and cuproptosis, which are closely linked to the pathological progression of diabetic cardiomyopathy. Although most research on diabetic cardiomyopathy is currently in the animal trial phase, the inhibition of these regulatory cell death processes can limit or slow down the progression of diabetic cardiomyopathy. Therefore, this review discusses the appropriate animal experimental models currently available for diabetic cardiomyopathy and evaluates the roles of apoptosis, necroptosis, ferroptosis, and cuproptosis in diabetic cardiomyopathy. We hope to provide new methods and ideas for future research in diabetic cardiomyopathy.
Keywords: DCM; apoptosis; cuproptosis; diabetic cardiomyopathy; experimental model; ferroptosis; necroptosis.