Conformation-specific RNA aptamers for phenotypic distinction between normal von Willebrand factor and type 2B von Willebrand disease

NAR Mol Med. 2024 Nov 23;1(4):ugae021. doi: 10.1093/narmme/ugae021. eCollection 2024 Oct.

Abstract

The A1 domain in Von Willebrand Factor (VWF) initiates coagulation through binding to platelet glycoprotein GPIbα receptors. Von Willebrand Disease (VWD)-Mutations in A1 that either impair (type 2M) or enhance (type 2B) platelet adhesion to VWF can locally destabilize and even misfold the domain. We leveraged misfolding in the gain-of-function type 2B VWD phenotype as a target, distinct from the normal conformation. Two nuclease-resistant 2'-fluoropyrimidine RNA aptamers were selected to discriminate normal A1 domains from a type 2B V1314D A1 variant in a glycosylated A1A2A3 tri-domain VWF-fragment. Two aptamers, W9 and V1, were isolated that selectively recognize, bind, and inhibit the A1-GPIbα interaction with WT A1A2A3 and V1314D A1A2A3, respectively. These aptamers were tested against their respective recombinant targets, plasma VWF, VWF concentrates, and patient plasma with the heterozygous type 2B VWD R1306W variant using clinical assays, surface plasmon resonance and inhibition assays of platelet adhesion to recombinant A1 and A1A2A3 domains under shear stress. The specificity of W9 and V1 aptamers confirms that pathological conformations of VWD Type 2B proteins are different from normal VWF. The availability of aptamers that distinguish normal plasma-derived VWF from VWD suggests potential applicability in clinical diagnosis of severe gain-of-function phenotypes.