The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways. We report that auditory-evoked depolarizations onto D1 SPN responses are stronger and faster. This is due to differences in feedforward inhibition, with fast-spiking interneurons forming stronger synapses onto D2 SPNs. Our results support a model in which differences in feedforward inhibition enable the preferential recruitment of D1 SPNs by auditory stimuli, positioning the direct pathway to initiate sound-driven actions.
Keywords: CP: Neuroscience; auditory cortex; auditory processing; auditory thalamus; basal ganglia; corticostriatal connectivity; fast-spiking interneuron; feedforward inhibition; membrane potential; sensorimotor transformation; striatum.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.