Non-antibiotic dependent photothermal antibacterial hemostatic MXene hydrogel for infectious wounds healing

Biomater Adv. 2024 Dec 17:169:214157. doi: 10.1016/j.bioadv.2024.214157. Online ahead of print.

Abstract

On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (Ti3C2Tx) through employing H2O2/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA. By employing TA as the multi-functional H-bond provider, the adhesiveness, hemostatic ability, mechanical property and bactericidal performance of the hydrogel was enhanced. And MXene in this system exerted benign photothermal antimicrobial performance, it was able to transform near-infrared (NIR) light into heat, then the bacteria would be physically damaged (thermal destruction) due to the hyperthermy, hence the antibacterial effect of which will not be restricted by antibiotic resistance. The temperature of the hydrogel in the experimental group can be increased by 25 °C after irradiation by 808 nm NIR light for 10 min, and the bactericidal efficiency against both E. coli and S. aureus reached >99 %. In vivo tests demonstrated that with the assistance of NIR irradiation, the hydrogel can distinctly accelerate the S. aureus infected wound closure. We envisage that this non-antibiotic dependent multifunctional photothermal hydrogel can provide a promise for bacteria-invaded wound healing.

Keywords: Hemostat; Infected wound healing; MXene; Photothermal; Tannic acid.