The effect of digestion on nanocarriers will affect the release and pharmacological effects of bioactive compounds in delivery systems. The digestion of cellulose is limited to gut microbiota, which offers a new research strategy for targeted delivery of bioactive compounds. Herein, positively charged cellulose-like chitosan/polyvinylpyrrolidone nanofiber was prepared to improve the residence time, colon target and gut microbiota regulation activity of quercetin decorated selenium nanoparticles (QUE@SeNPs/CS/PVPNFs). Selenium nanoparticles block the degradation of quercetin and QUE@SeNPs/CS/PVPNFs only decompose when caused by chitosanase secretion from gut microbiota. In vivo imaging showed that the residence time of QUE@SeNPs/CS/PVPNFs was longer than that of QUE@SeNPs. Thus, it significantly decreased the lipid concentrations in liver, which further inhibited insulin resistance in mice. Moreover, QUE@SeNPs/CS/PVPNFs treatment improves gut barrier integrity, increased the relative abundance of anti-obesity and anti-inflammation related bacterial including Akkermansia, Lactobacillus and Bacteroides. Consequently, the inflammatory factor (IL-β and TNF-α) levels in gut, liver and brain were also decreased. Nissl and PSD-95 staining indicated that QUE@SeNPs/CS/PVPNFs ameliorated synapse dysfunction in the brain. Therefore, QUE@SeNPs/CS/PVPNFs has a greater effect than QUE@SeNPs in improving cognitive ability in Morris water maze. Overall, QUE@SeNPs/CS/PVPNFs with prolonged residence time attenuates cognitive disorder via gut-liver-brain axis in AD.
Keywords: Alzheimer’s disease; Chitosan; Gut-liver-brain axis; Obesity; Quercetin modified selenium nanoparticles.
Copyright © 2024. Published by Elsevier B.V.