Recent progress in wound healing has highlighted the need for more effective treatment strategies capable of addressing the complex biological and physiological challenges of wound repair. Traditional wound dressings often fail to address the complex and evolving needs of chronic, acute, and burn wounds, particularly in terms of promoting healing, preventing infection, and supporting tissue regeneration. In response to these challenges, calcium alginate fibers (CAFs) have emerged as promising materials, characterized by their exceptional structural properties and diverse biological functions, offering significant commercial potential for the development of advanced wound dressings and therapeutic solutions. Here, a brief review of the CAFs for promoting wound healing is presented, with specific discussions of the fundamental characteristics of CAFs and its feasibility to be applied for adjusting physiological and pathological processes involved in wound healing. Then, a comprehensive and in-depth depiction of emerging representative fabrication techniques for generating CAFs is categorized and reviewed. Moreover, emerging applications benefits from the CAFs are reviewed, highlighting the multifunctional roles and benefits of CAFs in facilitating wound repair. Finally, the challenges and perspectives for further advancing CAFs toward a more powerful and versatile therapeutic strategy are discussed, particularly regarding new opportunities in biomedical research and clinical applications.
Keywords: Antimicrobial; Calcium alginate; Fiber; Hemostasis; Tissue regeneration; Wound healing.
Copyright © 2024. Published by Elsevier B.V.