[Research advances in the transplacental transfer efficiencies of environmental pollutants]

Se Pu. 2025 Jan;43(1):13-21. doi: 10.3724/SP.J.1123.2024.07002.
[Article in Chinese]

Abstract

Industrialization has led to significant increases in the types and quantities of pollutants, with environmental pollutants widely present in various media, including the air, food, and everyday items. These pollutants can enter the human body via multiple pathways, including ingestion through food and absorption through the skin; this intrusion can disrupt the production, release, and circulation of hormones in the body, resulting in a range of illnesses that affect the reproductive, endocrine, and nervous systems. Consequently, these pollutants pose substantial risks to human health. In particular, fetuses are highly sensitive to environmental pollutants during critical stages of development, and exposure during periods of growth and development can result in more-obvious and severe health hazards that can lead to preterm birth, low birth weight, and fetal malformations. The placenta acts as a barrier between the mother and fetus, and selectively filters certain pollutants. While some pollutants remain in the maternal bloodstream, others cross the placental barrier into the fetal umbilical blood through passive diffusion, placental transport proteins, or endocytosis. The transplacental transfer efficiency (TTE) is the ratio of the level of the pollutant in the umbilical blood to that in the maternal blood, and is a valuable metric for evaluating the ability of a pollutant to breach the placental barrier. A higher TTE implies that a larger proportion of pollutants are transferred from the mother to the fetus, thereby amplifying the potential risks to the fetus. Mass spectrometry-based detection methods are extensively used in the chemical and environmental sciences because they are exceptionally sensitive and highly resolving. This analytical technique involves ionizing compounds within a sample and identifying them based on their distinct mass-to-charge ratios; it enables both qualitative and quantitative analyses of various environmental pollutants. Current methodologies for examining the TTE of a pollutant include in-vitro experiments, animal studies, epidemiologic studies, and model calculation; these approaches help to evaluate the transfer of pollutants from mother to fetus via the placenta. Analyzing the TTEs of different chemicals enables high-risk pollutants to be identified and provides an understanding of their abilities to cross the placenta. Research on the transplacental transfer of environmental pollutants has focused mainly on per- and polyfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs), with relatively few studies on the TTEs of other pollutants reported. Pollutant transfer through the placenta is a complex process that is influenced by factors that include the physical and chemical properties of the pollutant (e.g., molecular mass, solubility, and lipophilicity), maternal factors (e.g., maternal health and lifestyle, maternal genetics, environmental conditions, and socioeconomic status), and placental characteristics (e.g., placental maturity, placental blood flow, transport proteins, and metabolic enzymes). This review summarizes recent advances in research on the TTEs of environmental pollutants, focusing on analytical methods, the TTEs of PFASs, PBDEs, PCBs, and OCPs, and the pivotal factors that influence TTEs. Studying the TTEs of pollutants enables their characteristics to be elucidated, thereby providing support data for research on the exposure, transfer, and accumulation of pollutants in the human body, as well as a theoretical framework for understanding the mechanism of transplacental transfer of environmental pollutants. This research is expected to play a vital role in assessing the impact of environmental pollutants on the health of pregnant women and their fetuses.

随着工业化发展,环境污染物的种类和数量不断增加。环境污染物广泛存在于空气、食品和生活用品等传播介质中,妊娠期接触环境污染物不仅影响孕妇健康,还可能对分娩结果及胎儿的发育产生不利影响。胎盘作为母体和胎儿之间的屏障,对部分环境污染物具有选择性阻隔作用,即一些污染物被阻留于母体血液,而另一些环境污染物通过被动扩散、胎盘转运蛋白或内吞作用穿过胎盘屏障,进入胎儿脐带血中。跨胎盘转移效率(transplacental transfer efficiency, TTE)即污染物在脐带血中与在母体血液中水平的比值,常用于评估环境污染物跨越胎盘屏障的能力。TTE与污染物的相对分子质量、脂溶性、极性和结构特征等理化性质有关;母体和胎儿的健康状况、胎盘血流量、胎盘成熟度、胎盘转运蛋白和代谢酶的功能也会显著影响污染物的转移过程。本文总结了TTE的研究方法以及近年来有关环境污染物(全氟和多氟烷基物质(PFASs)、多溴二苯醚(PBDEs)、多氯联苯(PCBs)和有机氯农药(OCPs)等)的TTE研究进展,并讨论了影响TTE的主要因素。本文对环境污染物的跨胎盘转移机制研究具有指导意义,并有助于评估环境污染物对孕妇和胎儿健康风险的影响。

Keywords: chromatography-mass spectrometry; environmental pollutants; organochlorine pesticides (OCPs); per- and polyfluoroalkyl substances (PFASs); polybrominated diphenyl ethers (PBDEs); polychlorinated biphenyls (PCBs); review; transplacental transfer efficiency (TTE).

Publication types

  • Review
  • English Abstract

MeSH terms

  • Environmental Pollutants*
  • Female
  • Humans
  • Maternal-Fetal Exchange*
  • Placenta* / chemistry
  • Placenta* / metabolism
  • Pregnancy

Substances

  • Environmental Pollutants