Myopia is a significant global public health issue. Key interventions for managing myopia include atropine treatment, optical correction, and surgical methods. This study focused on evaluating alterations in retinal protein expression after atropine therapy for myopia. Guinea pigs were randomly divided into four groups: control (CON), monocular form-deprivation myopia (FDM), FDM with 2-week atropine treatment (FDM + ATR), and atropine-only treatment (ATR). After two weeks of FDM induction, the FDM group showed significant differences in refractive error and increased axial lengths. In comparing the retinas of myopic and normal eyes, 30 proteins were found to have increased expression, while 8 proteins showed decreased expression. Atropine-treated retinas exhibited 73 proteins with increased expression and 29 proteins with decreased expression compared to the normal eyes. A total of 11 regulated proteins overlapped between the FDM + ATR vs FDM and FDM vs CON groups. IPA analysis indicates significant alterations in amino acid metabolism, energy production, post-translational modification, small molecule biochemistry, and free radical scavenging. Our study identifies retinal protein changes in myopic guinea pigs and in guinea pigs treated with atropine after myopia. These proteins could serve as potential targets for atropine treatment of myopia.
Keywords: Atropine; Form-deprivation myopia; Myopia; Proteomics; Retinal protein.
Copyright © 2024 Elsevier Ltd. All rights reserved.