Preparation and Performance Evaluation of CO2 Foam Gel Fracturing Fluid

Gels. 2024 Dec 7;10(12):804. doi: 10.3390/gels10120804.

Abstract

The utilization of CO2 foam gel fracturing fluid offers several significant advantages, including minimal reservoir damage, reduced water consumption during application, enhanced cleaning efficiency, and additional beneficial properties. However, several current CO2 foam gel fracturing fluid systems face challenges, such as complex preparation processes and insufficient viscosity, which limit their proppant transport capacity. To address these issues, this work develops a novel CO2 foam gel fracturing fluid system characterized by simple preparation and robust foam stability. This system was optimized by incorporating a thickening agent CZJ-1 in conjunction with a foaming agent YFP-1. The results of static sand-carrying experiments indicate that under varying temperatures and sand-fluid ratio conditions, the proppant settling velocity is significantly low. Furthermore, the static sand-carrying capacity of the CO2 foam gel fracturing fluid exceeds that of the base fluid. The stable and dense foam gel effectively encapsulates the proppant, thereby improving sand-carrying capacity. In high-temperature shear tests, conducted at a shear rate of 170 s-1 and a temperature of 110 °C for 90 min, the apparent viscosity of the CO2 foam gel fracturing fluid remained above 20 mPa·s after shear, demonstrating excellent high-temperature shear resistance. This work introduces a novel CO2 foam gel fracturing fluid system that is specifically tailored for low-permeability reservoir fracturing and extraction. The system shows significant promise for the efficient development of low-pressure, low-permeability, and water-sensitive reservoirs, as well as for the effective utilization and sequestration of CO2.

Keywords: CO2 foam gel fracturing fluid; high-temperature shear resistance; sand-carrying performance; unconventional oil and gas resources.