The ARK2N (C18ORF25) Genetic Variant Is Associated with Muscle Fiber Size and Strength Athlete Status

Metabolites. 2024 Dec 5;14(12):684. doi: 10.3390/metabo14120684.

Abstract

Background: Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (Ark2n; also known as C18orf25) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the ARK2N gene in human muscle physiology, and particularly in athletic populations, remains poorly understood. The aim of this study was threefold: (a) to compare ARK2N gene expression between power and endurance athletes; (b) to analyze the relationship between ARK2N gene expression and muscle fiber composition; and (c) to investigate the association between the functional variant of the ARK2N gene, muscle fiber size, and sport-related phenotypes.

Results: We found that ARK2N gene expression was significantly higher in power athletes compared to endurance athletes (p = 0.042) and was positively associated with the proportion of oxidative fast-twitch (type IIA) muscle fibers in untrained subjects (p = 0.017, adjusted for age and sex). Additionally, we observed that the ARK2N rs6507691 T allele, which predicts high ARK2N gene expression (p = 3.8 × 10-12), was associated with a greater cross-sectional area of fast-twitch muscle fibers in strength athletes (p = 0.015) and was over-represented in world-class strength athletes (38.6%; OR = 2.2, p = 0.023) and wrestlers (33.8%; OR = 1.8, p = 0.044) compared to controls (22.0%).

Conclusions: In conclusion, ARK2N appears to be a gene specific to oxidative fast-twitch myofibers, with its functional variant being associated with muscle fiber size and strength-athlete status.

Keywords: SNP; athlete status; gene expression; genotype; molecular physiology; muscle hypertrophy; polymorphism; skeletal muscle; sport; weightlifting.