Transcoronary study of biomarkers in patients with heart failure: Insights into intracardiac production

ESC Heart Fail. 2024 Dec 27. doi: 10.1002/ehf2.15175. Online ahead of print.

Abstract

Aims: Biomarkers are pivotal in the management of heart failure (HF); however, their lack of cardiac specificity could limit clinical utility. This study aimed to investigate the transcoronary changes and intracardiac production of these biomarkers.

Methods: Transcoronary gradients for B-type natriuretic peptide (BNP) and five novel biomarkers-galectin-3 (Gal-3), soluble suppression of tumourigenicity 2 (sST2), tissue inhibitor of metalloproteinase 1 (TIMP-1), growth differentiation factor 15 (GDF-15) and myeloperoxidase (MPO)-were determined using femoral artery (FA) and coronary sinus (CS) samples from 30 HF patients and 10 non-HF controls. Intracardiac biomarker production was assessed in an HF canine model using real-time quantitative PCR (qPCR) and western blot (WB) analysis.

Results: Compared with the control group, levels of all detected biomarkers were significantly elevated in the HF group, while transcoronary gradients were only observed for BNP, Gal-3 and TIMP-1 levels in the HF group (BNP: FA: 841.5 ± 727.2 ng/mL vs. CS: 1132.0 ± 959.1 ng/mL, P = 0.005; Gal-3: FA: 9.5 ± 3.0 ng/mL vs. CS: 19.7 ± 16.4 ng/mL, P = 0.002; and TIMP-1: FA: 286.7 ± 68.9 ng/mL vs. CS: 377.3 ± 108.9 ng/mL, P = 0.001). Real-time qPCR and WB analysis revealed significant elevation of BNP, Gal-3 and TIMP-1 in the cardiac tissues of the HF group relative to other groups.

Conclusions: This study provided evidence of transcoronary changes in BNP, Gal-3 and TIMP-1 levels in HF patients, offering insights into their intracardiac production. These findings enhance the understanding of the biology of these biomarkers and may inform their clinical application.

Keywords: biomarkers; heart failure; transcoronary changes.