Chemotherapy, a cornerstone of cancer treatment, is frequently marred by its hepatotoxic effects, which can significantly impede therapeutic efficacy. This systematic review meticulously evaluates the hepatoprotective properties of phytochemicals and plant extracts against chemotherapy-induced liver damage, primarily in experimental animal models. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, an exhaustive search was conducted across databases like SCOPUS, PubMed, and Web of Science, culminating in the inclusion of 61 pertinent studies. These studies illustrate those natural compounds, spanning a diverse array of phytochemicals and plant extracts that can effectively mitigate biochemical markers of liver damage, enhance antioxidant defences, and modulate inflammatory responses in model organisms subjected to hepatotoxic chemotherapeutic agents such as cyclophosphamide, cisplatin, and doxorubicin. Notably, the natural agents reviewed have demonstrated significant reductions in liver enzymes, improved histopathological outcomes, and bolstered cellular antioxidant capacities. The systematic synthesis of data underscores the potential of these natural substances to diminish liver toxicity associated with chemotherapy in preclinical settings. However, the review also highlights critical gaps in research, notably the underreporting of molecular mechanisms and inconsistent data on clinical translatability. To optimize the therapeutic utility of these compounds, future studies should focus on detailed molecular analyses and rigorous clinical trials to validate efficacy and safety, paving the way for integrated approaches in oncological care that minimize hepatic complications.
Keywords: Chemotherapy; Hepatoprotective; Hepatotoxicity; Natural compounds; Phytochemicals; Preclinical models.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.