In unsupervised transfer learning for medical image segmentation, where existing algorithms face the challenge of error propagation due to inaccessible source domain data. In response to this scenario, source-free domain transfer algorithm with reduced style sensitivity (SFDT-RSS) is designed. SFDT-RSS initially pre-trains the source domain model by using the generalization strategy and subsequently adapts the pre-trained model to target domain without accessing source data. Then, SFDT-RSS conducts interpatch style transfer (ISS) strategy, based on self-training with Transformer architecture, to minimize the pre-trained model's style sensitivity, enhancing its generalization capability and reducing reliance on a single image style. Simultaneously, the global perception ability of the Transformer architecture enhances semantic representation to improve style generalization effectiveness. In the domain transfer phase, the proposed algorithm utilizes a model-agnostic adaptive confidence regulation (ACR) loss to adjust the source model. Experimental results on five publicly available datasets for unsupervised cross-domain organ segmentation demonstrate that compared to existing algorithms, SFDT-RSS achieves segmentation accuracy improvements of 2.83%, 2.64%, 3.21%, 3.01%, and 3.32% respectively.
Copyright: © 2024 Lin1 et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.