In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed. One strain was engineered to produce and secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) to promote M2-like TAMs repolarization to M1-like TAMs, while the other strain was designed to secrete small interfering RNA (siRNA) targeting signal regulatory protein α (SIRPα). The two strains can continuously and efficiently produce bioactive therapeutic agents in situ, exerting a sustained and synergistic therapeutic effect in TAMs to inhibit tumor growth. To enhance treatment efficacy, optogenetic strategy was implemented to effectively control the production of GM-CSF, and outer membrane vesicles (OMVs) produced by engineered bacteria were utilized to protect the siRNA from degradation in the external environment. The experimental results indicated that the bacterial therapy platform could continuously produce and release bioactive GM-CSF and SIRPα siRNA, exhibiting significant therapeutic activity. In vivo experiments further demonstrated that this platform showed more sustained and stable therapeutic effects compared to conventional drug therapies. Additionally, the combination of these two engineered strains yielded the highest ratio of M1/M2 TAMs (0.80) and the lowest ratio of F4/80+SIRPα+TAMs (3.46 %) than single strain therapy. Our study expanded the potential of engineered bacteria as pharmaceutical factories for in vivo therapeutic applications.
Keywords: Cancer immunotherapy; Engineered bacteria; Macrophage reprograming; Optogenetics; Outer membrane vesicles.
Copyright © 2024 Elsevier Ltd. All rights reserved.