The development of electroactive polymers (EAPs) affords novel integrated actuation and sensing technologies for intelligent flexible systems, enabling them to achieve remarkable flexibility and intelligence. Among EAPs, plasticized polyvinyl chloride (PVC) gel stands out as an ideal candidate for next-generation intelligent flexible applications due to its combination of exceptional actuation and sensing properties. This paper presents a comprehensive overview of recent advances in PVC gel actuators and sensors, including fabrication, properties, modeling, and applications. In particular, the outstanding actuation and sensing properties of PVC gel are thoroughly analyzed to exhibit its immense potential for application in smart flexible devices. Furthermore, the inherent relationships between the properties and materials of PVC gel are further revealed. Moreover, recent modification techniques to enhance the actuation and sensing properties of PVC gel are summarized, offering guidance for improving its properties. The current challenges and promising perspectives for enhancing performance and facilitating applications are finally discussed. We believe this paper will inspire the development of high-performance flexible devices employing PVC gel, as well as other EAPs, thereby paving the way for their practical applications.
Keywords: Actuation property; Electroactive polymers; Flexible application; Plasticized PVC gel; Sensing property.
Copyright © 2024 Elsevier B.V. All rights reserved.