According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain. We propose an electrolyte-gated organic transistor (EGOT) that responds to the release of biogenic amines, like diamines and tyramine, generated by the degradation of protein-rich food. The EGOT sensor features a polymeric poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) gate electrode fabricated in the shape of a miniaturized beaker containing an aqueous solution in the inner side (to be exposed to food) and capacitively coupled through a hydrogel to the transistor channel on the outside (not in contact with food). The hydrogen bonds formed by the water-dissolved amines with PEDOT:PSS modulate the EGOT channel across a wide range of amine concentrations. We demonstrate that our sensor can detect different amines by the combinatorial analysis of the response from different channel materials, PEDOT:PSS and the other DPP-DTT, with a limit of detection as low as 100 pM.
Copyright © 2024 Elsevier B.V. All rights reserved.