The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling

Plant Physiol Biochem. 2024 Dec 24:219:109446. doi: 10.1016/j.plaphy.2024.109446. Online ahead of print.

Abstract

Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S. sclerotiorum infection in this study. BnGSTU12 expression was induced by S. sclerotiorum, with a strong increase 24 h after onset of infection. Transgenic functional analysis indicated that overexpression of BnGSTU12 in Arabidopsis thaliana and B. napus enhanced resistance to S. sclerotiorum, whereas BnGSTU12 silencing decreased S. sclerotiorum resistance. The inoculated BnGSTU12-OE A. thaliana and B. napus plants showed higher antioxidant enzyme activity and lower H2O2 contents than the wild type. As BnGSTU12 was rapidly induced by the phytohormones salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), we investigated the involvement of the JA and SA pathways in GSTU12-mediated S. sclerotiorum resistance. JA content was higher in infected BnGSTU12-OE plants than in the wild type, whereas their SA contents were comparable. In addition, the expression levels of JASMONATE RESISTANT (JAR) involved in JA-Ile biosynthesis and those of JA-responsive genes were higher, the expression of JAZ gene repressing JA signaling was less in OE plants than WT after 12 and 24 h inoculation with S. sclerotiorum. Our results show that BnGSTU12 enhances resistance to S. sclerotiorum through ROS homeostasis and JA signaling.

Keywords: BnGSTU12; JA signaling; ROS homeostasis; Sclerotinia sclerotiorum.