Genome-wide identification, phylogeny, evolutionary expansion, and expression analyses of ABC gene family in Castanea mollissima under temperature stress

Plant Physiol Biochem. 2024 Dec 24:219:109450. doi: 10.1016/j.plaphy.2024.109450. Online ahead of print.

Abstract

The ATP-binding cassette (ABC) gene family comprises some of the most critical transporter proteins in plants, playing vital roles in maintaining cellular homeostasis and adapting to environmental changes. While ABC transporters have been extensively characterized in various plant species, their profile in C. mollissima remains less understood. In this study, 164 ABC genes were identified and characterized within the C. mollissima genome, and subsequently classified into eight subfamilies. Collinear analysis suggested that dispersed duplication was the primary mechanism driving the expansion of the CmABC gene family. The study also examined morphological and physiological changes in C. mollissima under temperature stress, highlighting significant decreases in photosynthetic indicators and SOD enzyme activity, while other indicators varied. Transcriptome analysis revealed distinct expression patterns of various CmABC genes under temperature stress, identifying CmABCG29c and CmABCB11e as key candidates for responding to temperature stress. This was based on their expression patterns, correlation with physiological indicators, and WGCNA analysis. The expression levels of CmABC genes measured in RT-qPCR experiments were consistent with those observed in RNA-seq analysis. This research provides a theoretical foundation for understanding the physiological and gene expression responses of C. mollissima to temperature stress.

Keywords: ABC gene family; Antioxidant enzyme; Castanea mollissima; RNA-seq; Temperature stress.