The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions. This dual signaling system is analyzed for its potential in synchronizing neuronal activity and improving information transfer, with implications for brain-like computing systems. The clinical relevance is explored through the lens of neurodegenerative diseases and intrinsically disordered proteins, where oxidative stress may alter biophoton emission, offering clues for pathological conditions, such as Alzheimer's and Parkinson's diseases. The potential therapeutic use of Low-Level Laser Therapy (LLLT) is also examined for its ability to modulate biophoton activity and mitigate oxidative stress, presenting new opportunities for treatment. Here, we invite further exploration into the intricate roles the electromagnetic phenomena play in brain function, potentially leading to breakthroughs in computational neuroscience and medical therapies for neurodegenerative diseases.
Keywords: Biophotons; Electromagnetic radiation; Intrinsically disordered proteins; Neurodegenerative diseases; Neuron communication.
Copyright © 2024 Elsevier Ltd. All rights reserved.