This study aims to develop and validate different radiomics models based on thoracic and upper lumbar spine in chest low-dose computed tomography (LDCT) to predict low bone mineral density (BMD) using quantitative computed tomography (QCT) as standard of reference. A total of 905 participants underwent chest LDCT and paired QCT BMD examination were retrospectively included from August 2018 and June 2019. The patients with low BMD (n = 388) and the normal (n = 517) were randomly divided into a training set (n = 622) and a validation set (n = 283). Radiomics features (RFs) were extracted from the single and consecutive vertebrae in chest LDCT images to construct the single vertebra RFs models, mixed RFs models and Radscore models, respectively. The performance of these models was evaluated by the area under the curve (AUC) of receiver operator characteristic curve, using QCT as standard of reference. The Radscore models, mixed RFs models, and single vertebra RFs models yielded the AUC values ranging from 0.809 to 0.906, 0.792 to 0.883, and 0.731 to 0.884 for predicting low BMD in the validation set, respectively. For predicting low BMD, the Radscore model of L1-L2 vertebrae yielded the highest AUC of 0.906, and of T1-T3 yielded the lowest AUC of 0.809 (P < 0.05), respectively. However, there was no significant difference among the AUC values of three Radscore models constructed on the vertebrae of T4-T6 (AUC = 0.855), T7-T9 (AUC = 0.845), and T10-T12 (AUC = 0.871) for predicting low BMD in the validation set (P > 0.1). The Radscore model of L1-L2 have potential to serve as an important tool for predicting and screening low BMD from normal in chest LDCT images.
Keywords: Bone mineral density; Osteoporosis; Quantitative computed tomography; Radiomics.
© 2024. The Author(s).